INSTRUCTOR GUIDANCE EXAMPLE: Week One Discussion

1. I will use the following five vocabulary words in my discussion demonstrating my understanding of their meaning as relating to the math work.

- exponent
- integer
- variable
- lowest terms
- divisor

2. I will be using my sister's birth date for this exercise, and it is 21 October 1961. This means I have the following **integers** to work with:

Let a = 10

b = -21 (notice I made the day number negative) c = 61

I will be using the algebraic expressions in A – C given in the assignment for parts 3-5 of the discussion.

A) $a^3 - b^3$	This is the given expression with variables a and b and
	exponents of 3 on each of them
$10^3 - (-21)^3$	I have plugged in 10 for variable a and -21 for variable b.
1000 - (-9261)	The integer s were raised to the given exponent s.
1000 + 9261	Minus a negative becomes a plus.
10,261	Here is the final answer.
B) $(a-b)(a^2+ab+b^2)$	This is the given express which also uses variables a and b.
$[10 - (-21)][10^2 + 10(-21) + (-21)^2]$	
	I have plugged in 10 for a and -21 for b in each case.
[10+21][100+(-210)+441]	
	In the first part the two negatives became a plus, and in the second part the squaring and the multiplication was done.
31(100 - 210 + 441)	The first addition was done and the signs were simplified.
31(331)	The second quantity was simplified.
10,261	Here is the final answer.
C) <u>b-c</u>	This expression uses all three variables : a, b, and c.
C) $\frac{b-c}{2b-a}$	It is a rational expression with a divisor of $2b - a$.
-21 - 61	The integers have been plugged in for the variables .
2(-21) - 10	
- 82	Both numerator and denominator have been evaluated.
$\frac{-82}{-52}$	Both are negative which means the answer will be positive.
	This is our answer in lowest terms , and I will leave the
$\frac{41}{26}$	answer as an improper fraction.

6. [Student answers will vary on this question depending upon math background and memory.]