INSTRUCTOR GUIDANCE EXAMPLE: Week One Discussion

1. I will use the following five vocabulary words in my discussion demonstrating my understanding of their meaning as relating to the math work.

- exponent
- integer
- variable
- lowest terms
- divisor

2. I will be using my sister's birth date for this exercise, and it is 21 October 1961. This means I have the following integers to work with:
Let $\mathrm{a}=10$
$\mathrm{b}=-21 \quad$ (notice I made the day number negative)
$\mathrm{c}=61$

I will be using the algebraic expressions in $\mathrm{A}-\mathrm{C}$ given in the assignment for parts $3-5$ of the discussion.
A) $a^{3}-b^{3} \quad$ This is the given expression with variables a and b and exponents of 3 on each of them
$10^{3}-(-21)^{3} \quad$ I have plugged in 10 for variable a and -21 for variable b.
$1000-(-9261)$
$1000+9261$
The integers were raised to the given exponents.
Minus a negative becomes a plus.
10,261
Here is the final answer.
B) $(a-b)\left(a^{2}+a b+b^{2}\right) \quad$ This is the given express which also uses variables a and b. $[10-(-21)]\left[10^{2}+10(-21)+(-21)^{2}\right]$

I have plugged in 10 for a and -21 for b in each case.
$[10+21][100+(-210)+441]$
In the first part the two negatives became a plus, and in the second part the squaring and the multiplication was done.
$31(100-210+441) \quad$ The first addition was done and the signs were simplified.
31(331) The second quantity was simplified.
10,261 Here is the final answer.
C) $\quad \mathrm{b}-\mathrm{c}$ This expression uses all three variables: a, b, and c . $2 \mathrm{~b}-\mathrm{a} \quad$ It is a rational expression with a divisor of $2 \mathrm{~b}-\mathrm{a}$.
$-21-61$ The integers have been plugged in for the variables.
2(-21) - 10
$-82 \quad$ Both numerator and denominator have been evaluated.
-52
41 This is our answer in lowest terms, and I will leave the 26 answer as an improper fraction.
6. [Student answers will vary on this question depending upon math background and memory.]

