INSTRUCTOR GUIDANCE EXAMPLE: Week Two Discussion
One-Variable Compound Inequalities

- compound inequality
- and
- or
- intersection
- union

This is my "and" compound inequality: $-7 \leq 5+3 x \leq 20$
What that means is the inequality must fulfill two conditions at the same time. It means 5 +3 x must be equal to or less than 20 and also at the same time greater than or equal to 7. I think of these as "between" inequalities because it turns out that the solution set for x will be between two numbers. Now I will find out what those two numbers are.
$-7 \leq 5+3 x \leq 20 \quad$ Subtract 5 from all three parts of the inequality.
$-7-5 \leq 5-5+3 x \leq 20-5$
$-12 \leq 3 x \leq 15 \quad$ Divide all three parts by 3
$\frac{-12}{3} \leq \frac{3 x}{3} \leq \frac{15}{3}$
$-4 \leq x \leq 5 \quad$ So any value of x greater than or equal to -4 and less than or equal to 5 will make this inequality true.
This $-4 \leq x \leq 5$ is how this compound inequality is written algebraically.
As an intersection of sets it would look like $[-4, \infty) \cap(-\infty, 5]$ which equals $[-4,5]$ in interval notation.

The square brackets mean that the end points are included in the solution set; notice the green highlighting extends through the square brackets as well.

This is my "or" compound inequality: $4-x \geq 1$ or $6 x-3>27$
What this means is that there are two conditions and one of them must be true with any given x from the solution set but both cannot be true at the same time. Since the solution will turn out to be two disjoint intervals, I am going to solve each part of the inequality separately.
$4-x \geq 1 \quad$ Subtract 4 from both sides.
$4-4-x \geq 1-4$
$-x \geq-3 \quad$ We must pay close attention to that negative in front of x. To remove it I must divide both sides of the inequality by -1 which also means I must flip the inequality symbol over so it points the other direction.

Symbol is flipped.

$x \leq 3$	This is one part of my "or" compound inequality.
$6 x-3>27$	Add 3 to both sides.
$6 x-3+3>27+3$	Divide both sides by 6, but it is positive, so no flipping involved.
$6 x>30$	
$\frac{6 x}{6}>\frac{30}{6}$	
$x>5$	This is the other part of my "or" compound inequality.

The complete solution set written algebraically is
$\mathrm{x} \leq 3$ or $\mathrm{x}>5$

The solution set written in interval notation is the union of two intervals $(-\infty, 3] \cup(5, \infty)$

Here is a number line graph of the solution set:

Notice that the 3 is included in the solution set but 5 is not.

