INSTRUCTOR GUIDANCE EXAMPLE: Week Two Discussion

One-Variable Compound Inequalities

- compound inequality
- and
- or
- intersection
- union

This is my "and" **compound inequality**: $-7 \le 5 + 3x \le 20$ What that means is the inequality must fulfill two conditions at the same time. It means 5 + 3x must be equal to or less than 20 **and** also at the same time greater than or equal to - 7. I think of these as "between" inequalities because it turns out that the solution set for x will be between two numbers. Now I will find out what those two numbers are.

$-7 \le 5 + 3x \le 20$	Subtract 5 from all three parts of the inequality.
$-7 - 5 \le 5 - 5 + 3x \le 20 - 5$	
$-12 \le 3x \le 15$	Divide all three parts by 3
$-\underline{12} \le \underline{3x} \le \underline{15}$	
3 3 3	
$-4 \le x \le 5$	So any value of x greater than or equal to -4 and less than or equal to 5 will make this inequality true.

This $-4 \le x \le 5$ is how this **compound inequality** is written algebraically. As an **intersection** of sets it would look like $[-4, \infty) \cap (-\infty, 5]$ which equals [-4, 5] in interval notation.

The square brackets mean that the end points are included in the solution set; notice the green highlighting extends through the square brackets as well.

This is my "or" compound inequality: $4 - x \ge 1$ or 6x - 3 > 27

What this means is that there are two conditions and one of them must be true with any given x from the solution set but both cannot be true at the same time. Since the solution will turn out to be two disjoint intervals, I am going to solve each part of the inequality separately.

 $4-x \ge 1$ Subtract 4 from both sides. $4-4-x \ge 1-4$ $-x \ge -3$ $-x \ge -3$ We must pay close attention to that negative in front of x. Toremove it I must divide both sides of the inequality by -1 which also means I must flip theinequality symbol over so it points the other direction. $-x \le -3$ Symbol is flipped.

-x = -5 5

$x \leq 3$	This is one part of my "or" compound inequality.
6x - 3 > 27	Add 3 to both sides.
6x - 3 + 3 > 27 + 3	
6x > 30	Divide both sides by 6, but it is positive, so no flipping involved.
$\underline{6x} > \underline{30}$	
6 6	
x > 5	This is the other part of my "or" compound inequality.

The complete solution set written algebraically is $x \le 3$ or x > 5

The solution set written in interval notation is the **union** of two intervals $(-\infty, 3] \cup (5, \infty)$

Notice that the 3 is included in the solution set but 5 is not.