INSTRUCTOR GUIDANCE EXAMPLE: Week Two Discussion
[Please remember to use your own wording in your discussion. The writing here is intended to demonstrate the type of writing that is appropriate for a math discussion, and not intended for students to copy.]

For this discussion we are to use Cowling's Rule to determine the child sized dose of a particular medicine. Cowling's Rule is a formula which converts an adult dose into a child's dose using the child's age. As in all literal equations this one has more than one variable, in fact it has three variables. They are

$$
\begin{array}{lll}
a=\text { child's age } & \text { The formula is } & d=\frac{D(a+1)}{24} \\
D=\text { adult dose } \\
d=\text { child's dose }
\end{array}
$$

I have been assigned to calculate a 6-year-old child's dose of amoxicillin given that the adult dose is 500 mg .

| $d=\frac{D(a+1)}{24}$ | The Cowling's Rule formula |
| :--- | :--- |
| $d=\frac{500(6+1)}{24}$ | I substituted 500 for $D$ and 6 for $a$. |
| $d=\frac{500(7)}{24}$ | Following order of operations I added inside parentheses first. |
| $d=\frac{3500}{24}$ | Following order of operations the multiplication comes next. |
| $d=145.833 \ldots$ | The division is the last step in solving for the child's dose. |

The proper dose of amoxicillin for a 6 -year-old child is 146 mg .
The next thing we are to do for this discussion is to determine a child's age based upon the dose of medicine he has been prescribed. The same literal equation can be used, but we will just be solving for another of the variables instead of $d$. This time the adult dose is 1000 mg and the child's dose is 208 mg . I need to solve for $a$.

$$
\begin{array}{ll}
d=\frac{D(a+1)}{24} & \text { The Cowling's Rule formula } \\
208=\frac{1000(a+1)}{24} & \text { I substituted } 1000 \text { for } D \text { and } 208 \text { for } d .
\end{array}
$$

It should be noted that once both values have been substituted in, the result is a conditional equation for which there is only one possible value for $a$ to make it true.

| $208(24)=\frac{1000(a+1)(z 4)}{24}$ | Both sides are multiplied by 24 to eliminate denominator. |
| :--- | :--- |
| $4992=1000(a+1)$ | Multiplication on left side is carried out. |
| $\frac{4992}{1000}=\frac{1000(a+1)}{1000}$ | Divide both sides by 1000. |

$4.992=a+1 \quad$ One more step and it will be solved.
4.992-1 =a+1-1 Subtract 1 from both sides to isolate $a$.
$3.992=\mathrm{a}$
We have solved for $a$.

The dose of 208 mg is intended for a four-year-old child.

