INSTRUCTOR GUIDANCE EXAMPLE: Week Two Discussion

[Please remember to use your own wording in your discussion. The writing here is intended to demonstrate the type of writing that is appropriate for a math discussion, and not intended for students to copy.]

For this discussion we are to use Cowling's Rule to determine the child sized dose of a particular medicine. Cowling's Rule is a **formula** which converts an adult dose into a child's dose using the child's age. As in all **literal equations** this one has more than one variable, in fact it has three variables. They are

a = child's age	The formula is	$d = \underline{D(a+1)}$
D = adult dose		24
d = child's dose		

I have been assigned to calculate a 6-year-old child's dose of amoxicillin given that the adult dose is 500mg.

$d = \frac{D(a+1)}{24}$	The Cowling's Rule formula
$d = \frac{500(6+1)}{500(6+1)}$	I substituted 500 for <i>D</i> and 6 for <i>a</i> .
24 d = 500(7)	Following order of operations I added inside parentheses first.
24	
$d = \frac{3500}{24}$	Following order of operations the multiplication comes next.
<i>d</i> = 145.833	The division is the last step in solving for the child's dose.

The proper dose of amoxicillin for a 6-year-old child is 146mg.

The next thing we are to do for this discussion is to determine a child's age based upon the dose of medicine he has been prescribed. The same **literal equation** can be used, but we will just be **solving** for another of the variables instead of d. This time the adult dose is 1000mg and the child's dose is 208mg. I need to **solve** for a.

$d = \underline{D(a+1)}$	The Cowling's Rule formula
24	
208 = 1000(a+1)	I substituted 1000 for <i>D</i> and 208 for <i>d</i> .
24	

It should be noted that once both values have been **substituted** in, the result is a **conditional equation** for which there is only one possible value for *a* to make it true.

$208(24) = \frac{1000(a+1)(24)}{24}$	Both sides are multiplied by 24 to eliminate denominator.
4992 = 1000(a+1)	Multiplication on left side is carried out.
$\frac{4992}{1000} = \frac{1000(a+1)}{1000}$	Divide both sides by 1000.

4.992 = a + 1	One more step and it will be solved .
4.992 - 1 = a + 1 - 1	Subtract 1 from both sides to isolate <i>a</i> .
3.992 = a	We have solved for <i>a</i> .

The dose of 208mg is intended for a four-year-old child.