INSTRUCTOR GUIDANCE EXAMPLE: Week Three Discussion

Parallel and Perpendicular
For this week's discussion I am going to find the equations of lines that are parallel or perpendicular to the given lines and which are passing through the specified point. First, I will work on the equation for the parallel line.

The equation I am given is

$$
\begin{aligned}
& y=-\frac{2}{3} x+2 \\
& (-6,-3)
\end{aligned}
$$

The parallel line must pass through point
I have learned that a line parallel to another line has the same slope as the other line, so now I know that the slope of my parallel line will be $-\frac{2}{3}$. Since I now have both the slope and an ordered pair on the line, I am going to use the point-slope form of a linear equation to write my new equation.

$$
\begin{array}{ll}
y-y_{1}=m\left(x-x_{1}\right) & \text { This is the general form of the point-slope equation } \\
y-(-3)=-\frac{2}{3}[x-(-6)] & \text { I plugged in my given slope and ordered pair } \\
y+3=-\frac{2}{3}(x+6) & \text { I evaluated any signs next to each other } \\
y+3=-\frac{2}{3} x-\frac{2}{3}(6) & \text { I distributed the }-\frac{2}{3} \text { to each term inside the parentheses } \\
y+3=-\frac{2}{3} x-4 & \text { I show here the distribution of the }-\frac{2}{3} \text { and multiplied } \\
y=-\frac{2}{3} x-4-3 & \text { I subtracted } 3 \text { from both sides, moving like-terms together }-4
\end{array}
$$

This line falls as you go from left to right across the graph of it, the \mathbf{y}-intercept is 7 units below the origin, and the \mathbf{x}-intercept is 10.5 units to the left of the origin.

Now I will write the equation of the perpendicular line.
The equation I am given is $\quad y=-4 x-1$
The perpendicular line must pass through point
I have learned that a line perpendicular to another line has a slope which is the negative reciprocal of the slope of the other line. So the first thing I must do is find the negative reciprocal of -4 .

The reciprocal of -4 is $-\frac{1}{4}$, and the negative of that is $-\left(-\frac{1}{4}\right)=\frac{1}{4}$. Now I know my slope is $\frac{1}{4}$ and my given point is $(0,5)$. Again, I will use the point-slope form of a linear equation to write my new equation.
$y-y_{1}=m\left(x-x_{1}\right) \quad$ This is the general form of the point-slope equation $y-5=\frac{1}{4}(x-0) \quad$ I plugged in my given slope and ordered pair $y-5=\frac{1}{4} x-\frac{1}{4}(0) \quad$ I distributed the $\frac{1}{4}$
$y-5=\frac{1}{4} x \quad$ I multiplied $-\frac{1}{4}(0)$
$y=\frac{1}{4} x+5$
I add 5 to both sides of the equation, and the result is the equation of my perpendicular line!

This line rises as you move from left to right across the graph. The y-intercept is five units above the original and the x-intercept is 20 units to the left of the origin.
[The answers to part d of the discussion will vary with students' understanding.]

