Factoring

Since there are several different types of factoring problems assigned from pages 345-346, four types will be demonstrated here to offer a selection, even though individual students will only be working two from these pages.

#73. $x^3 - 2x^2 - 9x + 18$ $x^2(x-2) - 9(x-2)$ $(x-2)(x^2 - 9)$ (x-2)(x-3)(x - + 3)	Four terms means start with grouping The common factor for each group is $(x - 2)$ Notice the difference of squares in second group Now it is completely factored.
#81. $6w^2 - 12w - 18$	Every term has a GCF of 6
$6(w^2 - 2w - 3)$	Common factor is removed, now have a trinomial Need two numbers that add to -2 but multiply to -3 Try with -3 and +1
6(w-3)(w+1)	This works, check by multiplying it back together
#97. $8vw^2 + 32vw + 32v$	Every term has a GCF of 8v
$8v(w^2 + 4w + 4)$ 8v(w + 2)(w + 2)	The trinomial is in the form of a perfect square
8v(w + 2)(w + 2) $8v(w + 2)^2$	Showing the squared binomial Writing the square appropriately
#103. $-3y^3 + 6y^2 - 3y$ $-3y(y^2 - 2y + 1)$ -3y(y - 1)(y - 1)	Every term has a GCF of -3y Another perfect square trinomial Showing the squared binomial
$-3y(y-1)^2$	Writing the square appropriately

Here are two examples of problems similar to those assigned from page 353.

$5b^2 - 13b + 6$	a = 5 and c = 6, so ac = $5(6) = 30$. The factor pairs of 30 are 1, 30 2, 15 3, 10 5,6 -3(-10)=30 while -3+(-10)= -13 so replace -13b by -3b and -10b
$5b^2 - 3b - 10b + 6$	Now factor by grouping.
b(5b-3) - 2(5b-3)	The common binomial factor is $(5b - 3)$.
(5b-3)(b-2)	Check by multiplying it back together.
$3x^2 + x - 14$	a = 3 and c = -14, so ac =3(-14)= -42. The factor pairs of -42 are 1, -42 -1, 42 3, -14 -3, 14 2, -21 -2, 21 6, -7 -6, 7
2	We see that $-6(7) = -42$ while $-6 + 7 = 1$ so replace x with $-6x + 7x$.
$3x^2 - 6x + 7x - 14$	Factor by grouping.
3x(x-2) + 7(x-2)	The common binomial factor is $(x - 2)$.
(x-2)(3x+7)	Check by multiplying it back together.