INSTRUCTOR GUIDANCE EXAMPLE: Week Five Discussion

## Factoring

Since there are several different types of factoring problems assigned from pages 345346, four types will be demonstrated here to offer a selection, even though individual students will only be working two from these pages.
\#73. $x^{3}-2 x^{2}-9 x+18 \quad$ Four terms means start with grouping
$x^{2}(x-2)-9(x-2) \quad$ The common factor for each group is $(x-2)$
$(x-2)\left(x^{2}-9\right) \quad$ Notice the difference of squares in second group
$(x-2)(x-3)(x-+3) \quad$ Now it is completely factored.
\#81. $6 \mathrm{w}^{2}-12 \mathrm{w}-18 \quad$ Every term has a GCF of 6
$6\left(w^{2}-2 w-3\right) \quad$ Common factor is removed, now have a trinomial Need two numbers that add to -2 but multiply to -3 Try with -3 and +1
$6(w-3)(w+1) \quad$ This works, check by multiplying it back together
\#97. $8 \mathrm{vw}^{2}+32 \mathrm{vw}+32 \mathrm{v} \quad$ Every term has a GCF of 8 v
$8 v\left(w^{2}+4 w+4\right) \quad$ The trinomial is in the form of a perfect square
$8 \mathrm{v}(\mathrm{w}+2)(\mathrm{w}+2) \quad$ Showing the squared binomial
$8 \mathrm{v}(\mathrm{w}+2)^{2} \quad$ Writing the square appropriately
\#103. $-3 y^{3}+6 y^{2}-3 y \quad$ Every term has a GCF of $-3 y$
$-3 y\left(y^{2}-2 y+1\right) \quad$ Another perfect square trinomial
$-3 y(y-1)(y-1) \quad$ Showing the squared binomial
$-3 y(y-1)^{2} \quad$ Writing the square appropriately
Here are two examples of problems similar to those assigned from page 353.

$$
\begin{aligned}
& 5 b^{2}-13 b+6 \\
& 5 b^{2}-3 b-10 b+6
\end{aligned}
$$

$$
\mathrm{a}=5 \text { and } \mathrm{c}=6 \text {, so } \mathrm{ac}=5(6)=30 . \text { The factor pairs of } 30
$$

$$
\begin{array}{llll}
\text { are } 1,30 & 2,15 & 3,10 & 5,6
\end{array}
$$

$$
-3(-10)=30 \text { while }-3+(-10)=-13 \text { so replace }-13 b \text { by }-3 b \text { and }-10 b
$$

Now factor by grouping.

$$
b(5 b-3)-2(5 b-3) \quad \text { The common binomial factor is }(5 b-3) \text {. }
$$

$$
(5 b-3)(b-2) \quad \text { Check by multiplying it back together. }
$$

$$
3 x^{2}+x-14 \quad a=3 \text { and } c=-14, \text { so ac }=3(-14)=-42 . \text { The factor pairs of }-42 \text { are }
$$

$$
\begin{array}{llll}
1,-42 & -1,42 & 3,-14 & -3,14
\end{array}
$$

$$
\begin{array}{llll}
2,-21 & -2,21 & 6,-7 & -6,7
\end{array}
$$

We see that $-6(7)=-42$ while $-6+7=1$ so replace $x$ with $-6 x+7 x$.
$3 x^{2}-6 x+7 x-14 \quad$ Factor by grouping.
$3 x(x-2)+7(x-2) \quad$ The common binomial factor is $(x-2)$.
$(x-2)(3 x+7) \quad$ Check by multiplying it back together.

